SOLUTIONS /29

We show that the maximal number of blue faces is 12. For convenience, we shall
use the dodecahedral graph D whose vertices correspond to the faces of the icosa-
hedron, two vertices being linked by an edge when the corresponding faces are
adjacent. A coloring in blue or yellow of the faces of the icosahedron corresponds
to a coloring in blue or yellow of the vertices of D. Each of the 20 vertices of D has
degree 3 (see figure) and the coloring will respect the constraint of the problem
if and only if at most one blue vertex is adjacent to each blue vertex. A suitable
coloring with 12 blue vertices is presented on the figure.

@ :blue

O :yellow

Now, we show that a suitable coloring cannot have more than 12 blue vertices.
Each of the twenty faces of the dodecahedron has five vertices of which three at
most are blue vertices (otherwise at most one vertex would be yellow so that a
blue vertex would necessarily be adjacent to two blue vertices). If we count the
blue vertices by adding the blue vertices obtained face after face, this provides a
totality of at most 3 x 12 blue vertices. However, each vertex of D is a vertex of
exactly three faces, hence each of the blue vertices counted just before is counted
three times. Thus, we actually have at most 12 blue vertices.

4103. Proposed by Dan Stefan Marinescu, Leonard Giugiuc and Daniel Sitaru.

Let x,y and z be positive numbers such that x +y + z = 1. Show that

Dol —2)y/3yz(1 - y)(1 - 2)] = 4y/7p=.
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There were sixz correct solutions. Three of the solutions used algebraic inequali-
ties while the remaining three employed trigonometry. We present three different
solutions here.
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Solution 1, by Kee-Wai Lau.

The inequality is equivalent to
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or
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where each sum is cyclic with three terms. Thus it suffices to show that
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For (2), the Cauchy-Schwarz inequality implies that
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The result follows, with equality occurring iff x =y = 2 =1/3.
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Solution 2, by AN-anduud Problem Solving Group.

There exists a triangle ABC with sides of lengths a =y + 2, b=24+2z, c=z+y.
Let R be its circumradius and s its semi-perimeter; s = x +y + 2z = 1. The
inequality is equivalent to

Nﬁ N m]nmm

Noting that cos 4 = \/s(‘;—va, a = 2RsinA = 4Rcos 5 sin 4, etc., we have to
establish that

> = - — ) >8R Zgin = —gin — Zsin— ).
43R <sm 5 + sin 5 + sin 2 8R | cos 5 sin 5 + cos 2 sin 5 + cos 3 sin 2

Recall that
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(by Jensen’s Theorem, for example) and that
3(’LL1’01 + UV + ’LL3’U3) < (’LL1 + ug + ’LLg)(’Ul + vg + ’03)

when u; > ue > ug > 0 and 0 < v; < vy < vz (Chebyshev’s sum inequality).
Since the cosine and sine functions are monotonely opposite on (0, 7/2).
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as desired.

Solution 3, by Digby Smith.
We first establish that, for x,y,z > 0,

z(y + 2) 3
2 et ST

with equality iff £ = y = z. (The sum is cyclic with three terms.) This follows
from

3z +y)(y+2)(z+2) =2y +2)> +y(z+2)° + 2(z + y)?]
= 3[z(y® + 2%) + y(22 + %) + 2(2® + v*) + 22y2]
= 20a(y® + 2%) +y(2® +2®) 4 2(a® + y?) + Gryz
= 2(y® + 2°) +y(* + %) + 2(2® +y*) — 6ay2
> 2zyz + 2zyz + 2xyz — 6y2 = 0.
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Because  + y + z = 1, the inequality is equivalent to

2
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Recall the Holder inequality with u; and v; nonnegative for i = 1,2, 3:

3 /3 , 4 2/3 3
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Applying this to the triples
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and (v1,v2,v3)

:<<(y+z),/m’yl&> 7<(Z+m),/w>' 7((I+y) (z+x)z(z+y)) )}

and using the preliminary result, we find that

; (Z(y—l—z) (:U+yl(x—l—z)>

z(y + 2) (z+y)(z+2)
= (Z (:1:+y)(x+z)> (Z(y+z) T )
> (Z(y + z))3 =38.

The desired inequality follows directly.
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4104. Proposed by Daniel Sitaru.

Prove that for 0 < a < b <e¢ <d < 2, we have
5(ab® 4+ bet + ed + 16d) < 5(° + & + d° + 16a) + 128.
There were five correct solutions. We present two different ones here.

Solution 1, by Sefket Arslanagié; and Salem Malikié (independently).
By the arithmetic-geometric means inequality, we have

a® +4b° > bab®,  b° +4c° > 5bct, ¢ +4d° > 5ed?
and

d°+128 =d° +4-2° >5.2% = 80d.
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